Linear systems

Def A linear system is consistent if it has a solution A linear system is inconsistent if it doesn't have a sol.

How to solve it?
Use matrix \& row echelon form. (la for the first nonzero entry o below the nonzero entry
e.g

$$
\begin{aligned}
& x+y+z=5 \\
& x+2 y-z=9 \\
& 3 x+5 y-z=23
\end{aligned}
$$

scoefficents of the system (called 'augmented matrix')

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 5 \tag{2}\\
1 & 2 & -1 & 9 \\
3 & 5 & -1 & 23 \\
\text { pivots }
\end{array} \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 5 \\
0 & 1 & -2 & 4 \\
0 & 2 & -4 & 8
\end{array}\right) \rightarrow \begin{array}{l}
\text { (2)-0 } \\
\text { (3)-3.0 }
\end{array}\right.
$$

$$
\rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 1 & 5 \\
0 & 1 & -2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)(\sqrt{3}-2 \cdot(2)
$$

free variable

$$
\begin{array}{rl}
x+y+z=5 & x=5-(4+2 t)-t=1-3 t \\
y-2 z=4 & y=4+2 t \\
& z=t
\end{array}
$$

\rightarrow set z as t since it is fra.
pivot: first non-zero entry of each row free variable: if i-th column is a non-pivot column then we say x_{i} is a free variable.

$$
\begin{gathered}
a_{11} x_{1}+\cdots+a_{1 m} x_{m}=c_{1} \\
a_{21} x_{1}+\cdots+a_{2 m} x_{m}=c_{2} \\
\vdots \\
a_{n 1} x_{1}+\cdots+a_{n m} x_{m}=c_{n}
\end{gathered}
$$

If $c_{1}=\cdots=c_{n}=0$, we say the system is homogeneous.

Prop Consider a row echelon form of a homogenous system (not augmented). If

1) \# of pivot : \# of colum: exactly one solution
2) t of pivot $<\#$ of column: infinitely many solutions (more precisely. $\#$ of free variables ($\#$ of col - $\#$ of pivots) is the \# of indep sols)

Vector spaces

Def A vector space V is a set paired wi a scalar field IF and equipped w/ binary operations t and - such f hat

$$
\begin{aligned}
\cdot \quad & V \times V
\end{aligned} \quad \rightarrow V,
$$

whore + and are compatible (distribution \& associativity)
and $\left(V_{0}+\right)$ is an additive group $w /$ identity 0

- Usually, $F=I R, \mathbb{C}$ or \mathbb{Z}_{2}
egg $\mathbb{R}^{n} \cdot \mathbb{C}^{n}$

Def A subset of a vector space is a subspace if it contains 0 and is closed under addition and scalar multiplication

- A subspace is a vector space contained in some larger vector space.

How to make it?
Def Let V be a vector space and S a subset of V. The span of $S \quad(\operatorname{Span}(S))$ is the
smallest subspace of V containing \mathcal{S}.

- $\quad \operatorname{Spar}(S)=$ the smallest subspace of V containing S
$=$ the intersection of all subspaces containing S
$=$ the set of all linear combinations of S.

$$
\begin{aligned}
& L c_{1} v_{1}+\cdots+c_{n} v_{n} \\
& c_{i} \in F_{1} \quad v_{i} \in \mathbb{S}
\end{aligned}
$$

Def A set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent if for $c_{1}, \cdots, c_{n} \in \mathbb{F}$

$$
c_{1} v_{1}+\cdots+c_{n} v_{0}=0 \Rightarrow c_{1}=\cdots=c_{n}=0
$$

Def A basis of a vector space V is a linearly independent subset that spans V.
egg $\mathbb{R}^{2}, \quad\left\{e_{1}=\binom{1}{0}, e_{2}=(0)\right\}$

$$
\left\{e_{1}+e_{2}, e_{1}-e_{2}\right\}
$$

Thu Every vector space has a basis.

Thu Two bases of a vector space have the same cardinality

Def The dimension of a vector space is the number of elements in a basis.
e.g $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n \quad \operatorname{dim}\left(\mathbb{C}^{n}\right)= \begin{cases}2 n & (\text { as } 1 R-v . s .) \\ n & \text { (as } \mathbb{C}-\text {-vs) }\end{cases}$

Linear transformations

Def Let V, W be vector spaces over F.
A linear transformation $T: V \rightarrow W$ is a map sit.

$$
T(c u+v)=c T(u)+T(v) \quad c \in F, u, v \in V .
$$

Def Let $T: V \rightarrow W$ be a linear transformation.
The null space of T is

$$
N(T)=\{v \in V: T(v)=0\}
$$

The range of T is

$$
R(T)=\{T(v): v \in V ?
$$

$N(T)$ is a subspace of V
$R(T)$ is a subspace of W.

Def Two vector spaces V and w are isomorphic if there is an invertible linear map.
i.e. $\quad T: V \rightarrow W$

$$
T_{0}^{-1} T=I d_{V} \quad T_{0} T^{-1}=I d_{\omega}
$$

We write $\quad V \cong W$

Thy (classification of vector spaces) Let V be a vector space over \mathbb{F}. If $\operatorname{dim}(V)=\pi$, then

$$
V \cong \mathbb{F}^{n}
$$

Thu (matrix representation) $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ a linear transformation. Then there exist a matrix $A \in \mathbb{R}^{n \times m}$ sit

$$
T(v)=A v \quad v \in \mathbb{R}^{m}
$$

- the i - th column of A is $T\left(e_{i}\right)$

Def $\operatorname{rank}(T):=\operatorname{dim}(R(T))$
$\operatorname{rank}(A):=\#$ of indep columns of A
(: \# of pinots of an echelon form)
null (T): $:=\operatorname{dim}(N(T))$
null (A): : of indep sols of $A x=0$
TMn $T: V \rightarrow \boldsymbol{N}^{i^{\text {dimin }} \boldsymbol{V} \rightarrow \text { dimin }} \quad A \in \mathbb{R}^{n \times m}$

$$
\begin{aligned}
& \operatorname{rank}(T)+\operatorname{null}(T)=m \\
& \operatorname{rank}(A)+\operatorname{null}(A)=m
\end{aligned}
$$

